
Fall 2020 Math 680D:2 1/6

Lecture 3 - Edge Colorings

As one can color vertices, one can also color the edges of a graph. Here we require that any two edges that
share a common end-vertex are colored di↵erently. The smallest number of needed colors to color the edges of
a graph G is called the chromatic index of G, and it is denoted by �

0(G). Note that each color class induces a
matching of the graph.

1: Find chromatic index of C5, C6, and the 3D-hypercube Q3.

Solution: �
0(C5) = 3,

�
0(C6) = 2,

�
0(Q3) = 3,

An edge coloring of a graph G can be considered as a vertex coloring of its line graph L(G). Recall that
V (L(G)) = E(G), and two vertices e, f 2 V (L(G)) are adjacent when edges e in f are incident in G. So we
have the following claim.

2: Find line graphs of C5, C6, and Q3.

Solution: I hope you know how to do this...

Proposition 1. For any graph G,
�
0(G) = �(L(G)).

3: Why is the proposition true?

Solution: Coloring edges in G is the same as coloring vertices in L(G).

Obviously, we need at least �(G) colors to color the edges of G, i.e., �0(G) � �(G). Surprisingly, �(G)+1 will
be always enough - Vizing’s Theorem later.
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Notice that Q3 and C6 are bipartite graph, and it has chromatic index as its maximum degree. With the
following classical theorem of König from 1916, we will see that this is a case for every bipartite graph.

First, we do the following observation.

4: Let c be an edge-coloring of a graph G. Let ↵ and � be two distinct colors. How does the subgraph of G
induced by edges colored ↵ or � look like? Denote such subgraph by H↵,� . Explore the following coloring for
inspiration.

Solution: Let H↵,� be the subgraph of G induced by edges colored by ↵ or �. Notice
that every vertex is incident to at most one edge colored ↵ and at most one edge colored
�. Hence H↵,� has maximum degree two. So it is a collection of paths and cycles. Also
notice that the colors are alternating in these paths and cycles.

Theorem 2 (König). For every bipartite multigraph G, it holds

�
0(G) = �(G).

Proof. Let � = �(G). Suppose we have colored all the edges of G except edge e = uv. As there are at most
�� 1 colored edges at u, there must be a color i not present at u. Similarly, there exists a color j not used on
the edges of v.

5: Look at the subgraphs induced by colors i and j and finish the proof.

Solution: In case that we can choose i = j then we also color e by i and we are done.
So assume that this is not possible, and so i 6= j.

Now, consider the graph induced by edges of colors i and j, its components are paths
and cycles, on whose edges these two colors alternating. The component that contains
vertex u must be a path P as color j does not appear on the edges at v. The path P

does not contain v, as then it must terminate at this vertex, and as i and j alternating
on the edges of P , we infer that P is a a path of even length, but then P + e is an odd
cycle in G, a contradiction. So we can interchange the colors i and j on the edges of
P , this way color i dismiss at u and it does not appear at v. But then color e by i to
obtain a coloring of G.

One can give an alternative proof in the following way. As an exercise show that any bipartite graph is a
subgraph of a bipartite regular graph. An easy consequence of the Hall theorem is that a regular bipartite
(multi-)graph has 1-factor, in fact, it is a 1-factorable graph, i.e., there is a partition of its edges into 1-factors.
And, these 1-factors induce an edge-coloring of the original graph.
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1 Vizing’s theorem

6: Show that the Petersen graph is not 3-edge colorable.

u v

u
0

v
0

Hint: Suppose for contradiction that there is a 3-edge-coloring. If uv has color c, what colors are present at u0

and v
0? What is �(C5)0 =?.

Solution: Draw the Petersen graph in the usual drawing. Let uv be an edge of the
outer 5-cycle C colored by c. Let C 0 be the inner cycle (usually not drawn in a planar
way). Let u0 and v

0 be the neighbors of u and v respectively that are not in C. Observe
that each u

0 and v
0 are incident with an edge of C 0 colored by c. Since u0 and v

0 are not
adjacent, c must be on two edges of C 0. The outer cycle C needs all three colors, hence
C

0 must contain at least two edges of each of the the colors, which is a contradiction,
since C

0 has just five edges.

But before we prove it, let us introduce a definition. Let G be a properly edge-colored graph and ↵,� two distinct
colors used. Observe that the subgraph H↵,� of G induced by these two colors is comprised of even cycles and
paths on which these two colors alternating. Notice that by swapping these two colors on a component of H↵,� ,
the coloring still stays proper. Actually, we already use this technic in the above theorem. Subgraphs as H↵,�

are called Kempe chains, as Kempe was the first to apply them in some arguments (though he did that for
vertex colorings).

Theorem 3 (Vizing). Every simple graph satisfies

�
0(G)  �(G) + 1.

Proof. Suppose this does not hold for G and let � = �(G). Think of induction on the number of edges if you
do not like contradiction with smallest counterexample. We may assume that we have colored all the edges of
G but one e1 = vw1. Since we have � + 1 available colors, there is a color missing at v, say ↵, and there is a
color missing at w1, say �1. We may assume that we cannot choose ↵ and �1 to be the same color, since we
could assign this color to vw1 and get a contradiction.

7: Sketch the situation. What happens when you try to modify the coloring to assign �1 to e1? Hint - see
H↵,� Are there conflicts? How to fix them?

Solution: Color �1 must appear at v, say e2 = vw2 is colored by �1. Move color �1
from e2 to e1. We may assume that v, w1, w2 belong to the same H(↵, �1) component
otherwise we can swap ↵ and �1 on this component and assign ↵ on the edge e2 to
have a proper coloring of G.
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ve1w1

e2

w2

e3 w3

↵

↵

↵�1 �2

H(↵, �1) H(↵, �2)

Repeat this ’shift’ over and over again. Means get colors �1 6= �2 6= �3, . . ..

8: Why can we take 6= in the �i and �i+1?

Solution:

As � is finite, we encounter situation where edge ek = vwk is uncolored and at wk is missing some color �k

that satisfies one of the following:

• �k does not show at v, or

• �k = �i for some i < k � 1, i.e., a color that we encountered before.

9: Why will this happen?

Solution: If not before this will happen when k = �, notice that then either �� does
not appear at v or it must be equal to some previous �i (distinct from �k�1 as this
color we had on vwk).

10: How to finish the proof in either of the two cases?

Solution: In the first possibility we just put �k on vwk and we are done. And, in the
second possibility, observe that v, wi, and wi+1 belong to a component of H(↵, �i) in
which wk does not belong. So swap the colors ↵ and �i in the component of H(↵, �i)
that contains wk and at the end assign ↵ to vwk and we obtain a proper coloring of G.

vwi

wi+1

wi+2

wk�1

wk
↵

↵

↵

↵

�i

�i+1

↵
�i

H(↵, �i)

H(↵, �i+1)

H(↵, �i)

�i
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Vizing’s theorem arises a very interesting problem. Let

• Class I be simple graphs G for which �(G) = �
0(G),

• Class II be simple graphs G for which �(G) = �
0(G) + 1.

Thus, Q3 is a Class I graph and Petersen is a Class II graph. We can ask for every graph is it in Class I or in
Class II. From algorithmic point of view, it is NP-complete to decide for a graph which of these two classes is
of Holyer. Also worthy to mention that Erdős and Wilson showed that almost all graphs are of Class I.

11: Show that Vizing’s theorem does not hold for multigraphs. Consider the following graphs, called Shannon
triangles.
Generalize the construction and find a constant c such that this construction is showing �

0(G) � c ·�(G).

Solution: The line graphs are cliques. So the number of edges is the number if colors
needed for edges. If each edge has multiplicity µ, then �(G) = 2µ and �

0(G) = 3µ.
Hence �

0(G) � 3
2�(G).

4em

The following theorem gives an upper bound of �0 in term of � for multigraphs.

Theorem 4 (Shannon). Every graph G satisfies

�
0(G) 

⌅
3
2�(G)

⇧
.

The multiplicity of a graph G, denoted by µ(G), is the maximum number of edges that are pairwise parallel,
i.e., that have both end-vertices the same. Simple graphs have multiplicity 1. Vizing and Gupta independently
generalized Theorem 3 to loopless multigraphs involving the multiplicity.

Theorem 5 (Vizing, Gupta). Every graph G satisfies

�
0(G)  �(G) + µ(G).
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1.1 Goldberg conjecture

Comparing the last two theorems, Shannon bounds is sharper when µ > �/2, and oppositely for µ < �/2
sharper is the one of Vizing and Gupta. So, combining the last two results for multigraphs we have that

�(G)  �
0(G)  �(G) + min

⇢
µ(G),

⌅�(G)

2

⇧�

telling us that we have many more possibilities than just two as it is for simple graphs. Let us state a well-known
conjecture, which will somehow restrict the possibilities of chromatic index to just three possibilities.

12: Suppose we have some optimal edge coloring of G. Let S be a subset of vertices of G such that |S| � 3 is
of odd order. Show that

�
0(G) � 2|E(G[S])|

|S|� 1

Solution: Note that each color class uses at most (|S| � 1)/2 edges, so we need at
least 2|E(G[S])|/(|S|� 1) colors to color G[S].

Let

⇢(G) = max

⇢
2|E(G[S])|
|S|� 1

: S ✓ V (G) with S being odd and of size � 3

�
. (1)

Obviously ⇢(G) is a lower bound for �
0(G). The next conjecture, proposed independently by Goldberg and

Seymour is an attempt to preserve the dichotomy of simple graphs to only few case in multigraphs.

Conjecture 6 (Goldberg, Seymour). For every multigraph G, the chromatic index �
0(G) equals �(G) or

�(G) + 1 or ⇢(G).
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