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Lecture 3 - Edge Colorings ' 7 2 _ri
As one can color vertices, one can also color the edges of a graph. Here we require that two edges that

share a common end-vertex are colored differently. The smallest niI I er of needed colors to color the edges of

a graph G is called the|chromatic index of G| and it is denoted H Note that each color class induces a
matching of the graph.
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An edge coloring of a graph G can be considered as a vertex coloring of its line graph L(G). Recall that
V(L(G)) = E(G), and two vertices e, f € V(L(G)) are adjacent when edges e in f are incident in G. So we

have the following claim. L On
Sk 0 — 0,
2: Find line graphs of C5, Cg, and Q3. G- @

Proposition 1. For any graph G, y
X (G) = x(L(G))
3: Why is the proposition true?
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Obviously, we need at least A(G) colors to color the edges of G, i.e., X'(G) > A(G). Surprisingly, A(G) + 1 will
be always enough - Vizing’s Theorem later.
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Notice that @3 and Cg are bipartite graph, and it has chromatic index as its maximum degree. With the
following classical theorem of Konig from 1916, we will see that this is a case for every bipartite graph.

First, we do the following observation.

4: Let ¢ be an edge-coloring of a graph G. Le@nd@;e two distinct colors. How does the subgraph of G
induced by edges colored a or 8 look like? Denote such subgraph by H,, 3. Explore the following coloring for
inspiration. °

s *
.
L4 Y »
5 % 7 5 '
s ot 5 !
\d
% » 0 v
3 ’ et y
............ | FTTTLLD . I IRAE R L
% “' “‘ v
s )
s
. Y )
. ’
-------------------- v s

Proof. Let A = A(G). Suppose we have colored all the edges of G except edge e = uv. As there are at most
A — 1 colored edges at u, there must be a color i not present at w. Similarly, there exists a color j not used on
the edges of v.

5: Look at the subgraphs induced by colors 7 and j and finish the proof.
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One can give an alternative proof in the following way. As an exercise show that any bipartite graph is a
subgraph of a bipartite regular graph. An easy consequence of the Hall theorem is that a regular bipartite

(multi-)graph has 1-factor, in fact, it is a 1-factorable graph, i.e., there is a partition of its,edges into 1-factors.
And, these 1-factors induce an edge-coloring of the original graph. (%@
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1 Vizing’s theorem

6: Show that the Petersen graph is not 3-edge colorable.
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Hint: Suppose for contradiction that there is a 3-edge-coloring. If uv has color ¢, what colors are present at u’
and v'? What is x(C5)" =?.
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let us introduce a definition. Let G be a properly edge-colored graph and «, 5 two distinct
colors used. Observe that the subgraph H, g of G induced by these two colors is comprised of even cycles and
paths on which these two colors alternating. Notice that by swapping these two colors on a component of H,, g,
the coloring still stays proper. Actually, we already use this technic in the above theorem. Subgraphs as H, g
are called Kempe chains, as Kempe was the first to apply them in some arguments (though he did that for
vertex colorings).

Theorem 3 (Vizing). Every simple graph satisfies

Y(G) < AG) + 1.

Proof. Suppose this does not hold for G and let A = A(G). Think of induction on the number of edges if you
do not like contradiction with smallest counterexample. We may assume that we have colored all the edges of
G but one e; = vwi. Since we have A + 1 available colors, there is a color missing at v, say «, and there is a
color missing at wy, say $1. We may assume that we cannot choose o and 81 to be the same color, since we
could assign this color to vw; and get a contradiction.

7: Sketch the situation. What happens when you try to modify the coloring to assign £1 to e;? Hint - see
H, s Are there conflicts? How to fix them?
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Repeat this ’shift’ over and over again. Means get colors 51 # (B2 # (3, - . ..

8: Why can we take # in the §; and 8,117

As A is finite, we encounter situation where edge e, = vwy is uncolored and at wjy is missing some color S
that satisfies one of the following:

e [3;. does not show at v, or

e [ = f3; for some i < k — 1, i.e., a color that we encountered before.

([ =ke

9: Why will this happen?

10: How to finish the proof in either of the two cases?
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Vizing’s theorem arises a very interesting problem. Let

e Class I be simple graphs G for which A(G) = x'(G),

e (Class II be simple graphs G for which A(G) = x/(G)=*% 1.

Thus, @3 is a Class I graph and Petersen is a Class II graph. We can ask for every graph is it in Class I or in
Class II. From algorithmic point of view, it is NP-complete to decide for a graph which of these two classes is
of Holyer. Also worthy to mention that Erdés and Wilson showed that almost all graphs are of Class 1.

11: Show that Vizing’s theorem does not hold for multigraphs. Consider the following graphs, called Shannon
triangles.
Generalize the construction and find a constant ¢ such that this construction is showing x'(G) > ¢ - A(G).
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The following theorem gives an upper bound of X’ in term of A for multigraphs.

Theorem 4 (Shannon). Every graph G satisfies
X'(G) < [3AG)- @

The multiplicity of a graph G, denoted by u(G), is the maximum number of edges that are pairwise parallel,
i.e., that have both end-vertices the same. Simple graphs have multiplicity 1. Vizing and Gupta independently
generalized Theorem [3|to loopless multigraphs involving the multiplicity.

Theorem 5 (Vizing, Gupta). Every graph G satisfies

X' (G) < A(G) + pu(G).
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1.1 Goldberg conjecture

Comparing the last two theorems, Shannon bounds is sharper when p > A/2, and oppositely for u < A/2
sharper is the one of Vizing and Gupta. So, combining the last two results for multigraphs we have that

A(G) £X(6) < A©) + min {uc), |2}

telling us that we have many more possibilities than just two as it is for simple graphs. Let us state a well-known
conjecture, which will somehow restrict the possibilities of chromatic index to just three possibilities.

12: Suppose we have some optimal edge coloring of G. Let S be a subset of vertices of G such that |S| > 3 is

of odd order. Show that
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p(G) = max {w : S C V(Q) with S being odd and of size > 3}. (1)

Obviously p(G) is a lower bound for x'(G). The next conjecture, proposed independently by Goldberg and
Seymour is an attempt to preserve the dichotomy of simple graphs to only few case in multigraphs.

Conjecture 6 (Goldberg, Seymour). For every multigraph G, the chromatic index X'(G) equals A(G) or
A(G) +1 or p(G).
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